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The symmetry approach to higher-dimensional nonlinear 
equations 
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Department of Information Science. Utsunomiya University, Utsunomiya 321, Japan 

Received 3 August 1992 

Abstract. Conditions for the existence of reunion operaton a studied for arbitrarydrder 
scalar partial differential equalions with two independent variables. The coefficients of the 
operator a successively determined by those of the terms with higher degree. For a class of 
second-order equations. the operators with degree one are completely determined 

1. Introduction 

It is well known that the Lie-Backlund symmetries or the generalized symmetries are 
important in the study of nonlinear partial differential equations (PDES). In particular, the 
existence of an infinite number of such symmetries characterizes the integrability of the PDE. 
There are several ways to study infinite series of symmetries. Among others, the method 
of a recursion operator may be the most constructive because it yields the generalized Lax 
pair for the inverse scattering method for the PDE considered and also a classification of 
general integrable equations. 

For the (1 + 1)-dimensional scalar evolution equations, Ibragimov and Shabat [l] 
presented the problem of determining the recursion operators in a general way. These 
authors adopted the space 3 of the functions of finite number variables in the jet bundle 
space J to describe the evolution equation and &so the space of formal series of the total 
differential operator, with the coefficients on J ,  that is the space of the pseudo-differential 
operator, to describe the recursion operator for generalized symmetries. In a series of papers 
[2], they derived the necessary and sufficient conditions for the 1 + 1 scalar evolution 
equation to have a recursion operator and also a complete classification of the integrable 
scalar evolution equation with order up to three, i.e. Korteweg-de Vries type equations. 
For the (1 + 1)-dimensional multicomponent evolution equations, the same problem was 
analysed by Mikhailov et nl [31. They presented a list of the two-component integrable 
evolution equations with order two. For the evolution equations in (1 + I)-dimensional 
space, if the coefficients of the recursion operator are independent of the explicit ‘time’ 
variable, X I ,  say, the dimension of the differential operator can be reduced to one and hence 
the algebra of the operators is generated from D = d/dx2 only, where x2 is the ‘space’ 
variable. 

In this paper, we study the conditions for the existence of the recursion operators 
for general scalar PDEs with two independent variables. The (1 + 1)dimensional evolution 
equation is a special case of our general PDEs. Let x = {xi, x2)  be the independent variable, 
then the recursion operator is expressed by a formal series of two operators Di = d/dx‘ 
(i = 1,2) with the functions on J as Coefficients. Our analysis is also valid for the (1 +2)- 
dimensional evolution equations, if the derivatives by ‘time’ are eliminated by means of the 
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evolution equation itself and the recursion operators are assumed to be independent of the 
explicit 'time' variable. 

In section 2, we derive a system of equations for the coefficients of the recursion 
operators and in section 3, we study the smcture of the operator and present a successive 
relation for the coefficient functions 141. For a class of second-order PDES, all the recursion 
operators with degree one are completely determined in section 4. 

Naruyoshi Asano and Hideo Nakajima 

2. Recursion operators 

A PDE of mth order for a scalar U with two independent variables x = [ % I .  x ' }  is written 
in the form 

f ( x ,  U ,  U([), ..., U(,)) = 0 (2.1) 

where u ( ~ )  is the set of  kth order derivatives 

ucy) = {ui,jli + j = k; 0 < i, j < 03) 

r.1 . - - af+j u / ( a x 1 ) ' ( a x 2 ) j .  

We call m the order off and write O(f) = m. In this paper m is assumed to be larger than 
one, m 2. The total derivative operators D1 and Dz are defined as usual by differmtial 
operators on J .  

Two operators defined by f are introduced: 

Vf (D'"f)a(~) (0 < k < CO) 

f* = ~ x ) D ' ~ '  (0 < k, 6 m) 
where (k) = ( i ,  j ) ,  

D I X )  - {  - D ~ D J  ,I i + j = k , O < i , j < m ]  

?)(XI = {a/aui,j /i + j = k, 0 6 i ,  j i CO) 

AX' = {a/?)ui,jfli f j = k, 0 < i, j < 001 

and dummy (k) is summed over the indicated range. We introduce a two-dimensional 
version of the pseudo-differential operators with commuting set D(') = {D?D$I11 + 12 = 
I ,  -W < 11. 12 < 00) subject to a multiplication law 

where 
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and 

Dll-k) = Dlt-kIDlrh 
1 2 '  

A recursion operator L for the symmetry s of PDE (2.1) is defined by a formal series 

satisfying identically 

[f* - Vf. L ]  = 0 on J (2.4) 

where coefficient l ' k )  is the set of functions {l(k,.&[kl + kz = k} on J and 

The integer 1 is called the degree of the formal series and written as 1 = deg L if at least 
one [ ( I )  is non-vanishing. We consider the case in which the coefficients [(k,.I-&!,) of the 
leading terms of L are only non-vanishing for~finite numbers of kl. Equation (2.4) is an 
identity of the formal series and the coefficient of the power D's) (s = m + 1, m + l  - 1, . . .) 
must vanish at each (s). After some calculations including the interchange of the order of 
summations, ~(2.4) yields 

for each (s) = (SI. sz) (SI + sz 4 m + l ) ,  where e,,, = 1 for s such that SI + sz < 1, = 0 
for 1 <SI +sz 4 i + m ,  ( t )  = ( c l ,  tz )  is summed in the domain DT; tt f t z  3 SI f s z  - m ,  
f l  3 - m, tz 3 sz - m, tl + tz < 1 on the r-plane and (k) = (kl, kz) is summed in the 
domain DK; kl 2 max (0, ST - t ~ ] ,  k2 2 max (0, SI - r ~ ] ,  k, + kz < m on the k-plane. 

3. Equations for 

In this section, we study the structure of (2.5) and present equations to determine I ( $ )  
successively for arbitrarily fixed m = O(f) and 1 = deg L. From the shape of the domains 
of the summations on t and k, it is convenient to choose SI and SI + sz as independent 
parameters. 

First we note that in the case SI + sz = m + 1, (2.5) is trivially satisfied since for 
commutators the formal leading-order terms always vanish. 
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3.1. Equarions for si + s2 = m + I  - I 

In this case, the summations on r are taken along the lines tl + t2 = 1 and rl + tz = 1 - 1 
in the t plane. However, the summations along the line rl + r2 = 1 - 1 are shown to vanish 
identically and (2.5) takes the form 
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(3.1) 

where rl (s, 1) is a differential operator 

rib t )  = (s - + 1)fis-r+1,m-$+,-1)D1 - tID~fir-~+i.m-s+t-i)l 

+ (m - s + t)fi~-r.~-~+tjDz - (1 - f ) [ D ~ f i ~ - , . ~ - ~ + ~ ) l .  

For each SI. (3.1) contains m + 2~independent l(t,.[-t,j, (I(s,-m,i+m-s,j, I(sl-m+i.f+m-sl-l), 

. . ., l(s,+i,f-s,-~)} and the term ~ l ( s l , t i ) l ~ ~ , , ~ ~ , , ~  is presented by a dot on the tl  - S I  plane 
in figure 1, where 1 = 3 and m = 2 are chosen for the definiteness and the dots with 
a common SI represent all the terms in (3.1). An unfilled circle at (0, -1) denotes that 
rl(-l, O)I(O, 1 )  does not appear in (3.1) with SI  = -1 while an unfilled circle at ( I ,  I +m) 
means the lack of rl(I + m, l)l(f.o) in (3.1) with si = 1 + m. A vertical alley of the dots 
represents terms with common llt,,f-t,, among equations (3.1) with different SI.  It is noted 
that on the boundary lines SI = rl - 1 and s1 = rl + m, r l ( s l ,  ti) is not the differential 
operator but simply the multiplication of functions rI(s1, SI + 1) = -(SI + l)DiAo,,) and 
rl (SI, SI  - m) = -(l + m - s~)D~f,,,o), respectively. Hence, if f(o,mj and f(m,oj are not 
constants, which we assume hereafter, the only possible case where the finite numbers of 
1 ~ , , ~ - ~ , )  are non-zero is that in which the set (3.1) with SI = 0.1,. . . , I  + m - 1 is closed 
with respect to the set l ( , , , ~ - ~ , )  (tl = 0, 1, . . . , 1) and the other l(fz,i-f,) (rl e 0 and t1 t 1) 
vanish identically. Thus for a prescribed f ,  we have an overdetermined system of I + 1 
unk~owns h,,,f-,,) 

s,+1 

~ , , r l ( s l , t i ) ~ ~ l ~ , ~ - , , ~  = O  ( O G S ~  ~ 1 f m - 1 )  (3.2) 
SI-m 

in the lozenge cut by tl = 0 and tl = 1 and 

l(,l,i-fl) = 0 (ti < 0 and ti > I ) . '  (3.3) 

3.2. Equarions for SI + s2 = m + 1 - i (i > 2) 

The summation of t is taken on the trapezoidal region defined by r I  + tz > 1 - i, tl 2 
SI -m, tz 2 s2-m and rl f r z  < 1 on the r plane. We can show that the summation along the 
line rl +tz = I- i  vanishes identically. Since the unknown l(,l.,2) with ti +tz = 1-k ( k  2 1) 
are all located only on the line t1 + t2 = 1 - k, the summation of the terms including 
with r I  + tz = I - i + 1 and those with tl + t2 t I - i +'1 can be separated 

P , + i  

sl-m 
t jr i (S l .  tI)h+t,+I-i) = Ai (0 G SI < I f m  - i) (3.4(Sl)) 
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4 

Figure 1. 11 - SL plane presenting the terms in (3.1). The figure shows mer= 3 and m = 2 
case. 

where 

ri(~, t )  = (S - t + l)f(s-t+l.m-r+t-I)D1 - tID~f(r-r+~.m-s+t-~)l 
+ (m - s + t ) f ~ s - i . m - s + t ~ D ~  - (1 + 1 -,i - f)[D~f(~-t,~-s+t)l (3.5) 

and Ai contains IIII.i-,,+1-,) with j only in the interval 1 < j < i. 
Suppose that all flf,,,,, with tl + t 2  > 1 -i+ 1 for fixed s1 and i are given, then (3.4($1)) 

is a differential equation for m + 2 unknowns (l,,,i-z,+~-i)Isl - m < t l  < SI + 1) and has 
solutions for a class of PDE f = 0. 

As for  the case of s1 + sz = m + I - 1 discussed in section 3.1, we consider the 
condition that only finite numbers of 1,,,,12) for tl 0 and t2 > 0 are non-vanishing. For a 
fixed i, each term of the left-hand side of (3.4(sl)) is presented in figure 2 by a dot with 
the corresponding coordinate (ti, SI) on the l i e  s1 = constant. Two unfilled circles show 
the absence of r i ( s l ,  t ~ ) l ~ t ~ , ~ - t ~ + l - i )  at the corresponding values of sI and t i .  Thus the only 
possible case for a finite number of ril to be non-vanishing is that ril are vanishing for all 
fl such that t1 > I +  1 - i  or tl < -1 

l(,,,i-t,+i-i) = 0 (tl < 0 and ti > I + 1 - i) (3.6) 

and that fori in the range 2 < i < I  + 1 we have1 + m  + 1 - i equations 

S,+l 

st-m 
,,rib, tl)l(,,,i-ll+l-i) = A; (0 < sl < I + m - i) (3.7) 

for I + 1 - i functions I,,+t,+l-t, (0 < tl < 1 + 1 -.i) in the lozenge cut by the lines 
fl = 0 and f1 = I + 1 - i. The lozenge reduces to a section of the line tl = 0 for i = I + 1. 
Thus there are m equations to determine one unknown function l(0.0). For i larger than 
I + 1, the open circle on the upper boundary moves to the left-hand side of the SI axis 
and hence L must be a semi-infinite series of the negative powers of Des'. In this case, 
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f 

Figure 2. 11 -SI plane presenting the terms in the right- 
hand side of (3.4(s1)). The figure shows the 1 = 3, 
m = 2 and i = 2 case. 

%igure 3. r1 - r2 plane showing the recursive smcture 
of l(t,.L2) in (3.4(~1)). 

however, (3.4(si)) is a system of algebraic equations for l( l ,-m,i+m+~-i-l ,)  or l(l,+l,~-i-lt) 
on the boundary lines and we can always determine unknown Is with a certain number of 
Is being arbitrary. 

Let us show in figure 3 the recursive structure of (3.4(sl)) with respect to l( lt , l- l ,+i-i).  

For a fixed i ,  we assume that all l(r,,r*l with tl  + t2 z 1 - i + 1 are known and so hi 
in (3.4(s1)) is a known function. We also assume that (3.4(Sl)) has solutions for any SI 
and a class of f .  Then increasing or decreasing si by one in (3.4(sl)), we obtain a new 
equation where l~s,+z,~-sl-i-i, for (3.4(s1+ 1)) or l(s,-~-m.~-s,+2+m-i) for (3&- 1)) only 
is unknown and from our assumptions these unknowns are determined from (3.461 f 1)). 
These processes make us determine all l(l,,~-l~+l-il on the line tl + t z  = I + 1 - i and from 
the reduction on i we can obtain, in principle, all l(l,.12)s with tl + t2 4 1 - i + 1 (i > 2). 

4. Example for O ( f )  = 2 and deg L.= 1 

The analysis of (3.7) for general 1 = deg L and m = O( f )  is laborious work and has not yet 
been completed. Here we restrict ourselves to the case I = 1 and m = 2 and assume that 
the function f defining the PDE and the coefficients l ( k ) s  for the operator L are functions of 
X = um, Y = u11 and Z = uoz only. Furthermore, L is assumed to have only the leading 
terms. Then, we will exhaust all the solutions of the pair f and L to (2.4). Following the 
discussions in section 3.2, L with (3.3) has the form 

L = l(lo)D1 +l(oi,Dz (4.1) 

and 

f* = fxD? + fyDiDz + f& (4.2) 

where fx = fiz.01, fy  = f i ~ ~ i  and fz = fi0.21. Since the forms of the operators are 
restricted, it is more straightforward to consider the algebra of (4.1), (4.2) and (2.4) directly 
rather than to deal with (3.2). 
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Let Si ( i  = 1,2) be the linear space of the truncated operators as (4.1) and (4.2) with the 
degree 1 and 2 respectively. We divide the totality of Ls into two classes: (A) L commutes 
only with constant multiples of L, M = C L  (C = constant); and (B) L has commuting 
element M E SI linearly independent of L. Operators in Sz may be expanded by operators 
in SI. We choose, as the basis of SI, [ L ,  DI} for case A and [ L ,  M) for c&e B and expand 
N ~E SZ in terms of these bases. The coefficients in the expansion of f* E SZ and L E SI 
are determined from the conditions obtained from (2.4). 

4.1. Case A 

Propositionl. Let L E SI commute only with M = C L  (C = constant). Then the condition 

deg[L, NI < 1 ( N  E~SZ)  (4.3) 
implies that there exists a constant C' such that deg(N - C'L') < 1. 

Proojf In terms of the basis [ L ,  D)  (D = D1), N may be written in the fonn 

N = L O L + v D )  +<DZ+ NI 

where N I  E SI, and 6, q and < are functions of X, Y and 2. If < is not identically zero, 
we can put ( = A1 by rewriting (k<)l/zD as D. Since the coefficients of Dz and DL in 
[ L ,  NI must vanish, we have [ L ,  D] = r L  and Lq f 2r = 0 for some function 5. Then it 
is easy to see that D' = D f q L /2  commutes with L, which contradicts the assumption in 
proposition 1 and hence < = 0. From N = L z + N I  (z E SI) and (4.3), one has [LEI = 0, 

0 which gives E = C'L (C' =constant). 

Since (2.4) yields deg([f,, L ] )  4 1, we may put, without loss of generality, 
.~ 

f* = L~ + N~ E sl) (4.4) 
and study further conditions on f: 

For f* and L given by (4.1) and (4.2), the leading terms in (4.4) yield the conditions 
2 fx = (&IO)) * 

410, = fX'IZ 

fY = 21(10)401) fz = (qol)) . 
Let us choose the branch of the roots as 

(4.5) 112 
401, = *fi 

and obtain a necessary condition 
112 112 fr =+2fx fz  . (4.6) 

Then (4.1). (4.2). (4.3, (4.6) and (2.4) reduce to.20 equations for f as the condition that 
(2.4) is an identity with respect to the variables of order 3, ~ ( 3 ) .  Among these 20 equations, 
16 equations are found to hold trivially by REDUCE, provided the rest, four equations, are 
satisfied. Eventually we find 

(4.7) 
where CI and C2 are arbitmy constants. The operator L is given by (4.1), where l(10) and 
l(01, are given from (4.5) and (4.7) as 

There is an ambiguity in the transformation (X, Y, Z) + (X + XO, Y + YO, Z + ZO) where 
XO, Yo and Zo are arbitrary constants. Thus the general form o f f  and L depends on five 
parameters. 

f = (I/R)(XZ - YZ) (R = C f X  f2ClCzY +-C,ZZ) 

hi01 = (l/R)(CI'Y + CzZ) ~(oI) = -(l/R)(CiX + C2Y). 
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4.2. Case B 

Proposition 2. Let L E SI and M E SI be linearly independent and satisfy [L, MI = 0 and 
let P be the operator such that deg P = 2 and deg [L, PI < 1 and let L, M and P have the 
leading terms with the coefficients depending only on X ,  Y and Z. Then P has the leading 
terms in the form 

Naruyoshi Asano and Hide0 Nakajima 

P =mlLZ +m2LM +m3M2 + ... 
where m; (i = 1.2.3) are constants. 

Proof. Let m be function of X ,  Y and Z. Then Lm = 0 implies m = constant since, in 
Lm, coefficients of DIX, DzX and so on must vanish. A general operator of degP = 2 
can be presented as 

P = mlL2 +mzLM +m3M2 + ... 
where mi (i = 1,2,3) are functions of X ,  Y and Z. From the condition deg[L, PI < 1 and 

[L, PI = (Lml)L2 + ( L ~ ~ ) L M  + ( ~ m 3 ) ~ ’ + .  . . 
one has Lmj = 0 and hence mi = constant. 0 

We give L and M in proposition 2 in explicit forms. 

Proposition 3. Let TI E SI and 
and have the leading terms with the coefficients depending only on X ,  Y and Z ,  then 
and 

E SI be linearly independent, and satisfy [TI, = 0, 

are the linear combinations of LI and LZ given by 

_ _  
(A = XZ - Y Y ,  Y = Y + C, C =constant) (4.8) 

except for the ambiguity of the transformation X + X + X o ,  Y + Y +Yo and Z + Z+Zo 
where XO, YO and ZO are constants. 

The proof is given in the appendix. 
Let us expand the recursion operator L E SI and f* E S2 in terms of LI and L2. 

L=nlLl+n2L2 (4.9) 

where nl and n2 are arbitrary constants and 

f* = ~ I L ?  + ~ Z L I L ~  + m 3 ~ :  + . . . (4.10) 

where the mi (i  = I ,  2,3) are also constants by the condition deg[L, fJ < 1 and the 
proposition 2. Substituting (4.8) into (4.10). we obtain necessary conditions for f as 

1 
A2 
1 

A2 

1 
A2 

fx = - ( m l Z * - m z ~ ~ + m 3 ~ ~ )  

fY = - [ - 2 m l ~ ~ + m 2 ( ~ ~ + ~ ~ ) - 2 m 3 X ~ ]  

fi = - (mlYY--m2XY+m3XZ).  
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These equations are integrable for f iff Y = 7, i.e. C = 0 to lead 

f =  -(- m l Z +  m2Y - m,X) +m4 (4.11) 

with arbitrary values of the constants mi (i.= 1,2,3,4). It is confirmed that (2.4) is satisfied 
at every degree for (4.9) and (4.11) with constants ni and mi arbitrary. 

Thus one has (4.11) as the PDE f = 0  for case B. Since (4.11) also admits 
the transformation (X, Y, 2) + ( X  + Xo, Y + YO, Z + ZO) (XO, YO. 20 = constant), 
(4.1 1) eventually has seven parameters while its recursion operator (4.9) depends on five 
parameters. Khabirov [5] studied a general second-order equation admitting symmetry in a 
different context but, in particular, the recursion operator was not discussed. 

As we have mentioned in the introduction, (4.1) is also a recursion operator for the 
(I + Z)-dimensional evolution equation 

1 
A 

( A  = X Z  - Y') 

u t -  f = o  
where U, is a time derivative of U. 

Appendix 

Here we give a theorem and a prrmf of proposition 3 in the text 

Theorem. Let Li = ljjDj ( i ,  j = 1,2) be linearly independent firstdegree operators such 
that 2 x 2 matrix I = (Ii, J are functions of xi (i =~ 1, 2) and are invertible. Then the equation 
[ L  1, L2]= 0  yields the general form of I-' as 

[[-I].. U - - D. JqJ . (A.1) 

where q j  ( j  = 1,2) are functions of {xi]  such that the matrix {Diqj] is invertible. 

Proof. Since I is invertible we have Di = (I-')ijLj. Let d 
derivative, then d2 = dx'dxjDiDj = 0 implies IDi, Dj] = 0. On the other hand, 

dxiDj be the exterior 

d2 = dxi dxjDiI j 'L/  

= dx'dxj[(Dilj;')L/ + I j 'DjLt]  

- - 2  1d.r' dxj[(DiIJY1 - Djl<T')L/ + IJT1lz;'[Lk, L / ] ]  

= [d(lj;ldd)]Li 

by virtue of [Lr, Li] = 0. Thus one has d(lJ;Idxj) = 0, or Ir 'dxj  Ji = dql = Djqldxj, for 
some function 9l. i.e. IJ;' = Dj91. n 

Proof ofproposition 3. Let { q j ]  be functions on J and Li E SI, and Li have terms 
with the coefficients depending only on X, Y and Z, then from (A.l), qj must be a linear 
function of U(, ,  and { x i ) .  Let B = [ & j }  and C = (Cl j ]  be constant 2 ~ x  2 matrices and B 
be invertible. then we can.set 
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and 
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Then equation (A.l) gives 

where 

X Y  
U=(:: : : : ) = ( y  z) 

and 1 = B(U + C)-'. Without loss of generality, we may set B = [&j] and 

A suitable transformation of X, Y and Z reduces 1 to (4.8) for Li. I3 
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